Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Contam Hydrol ; 264: 104347, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38657473

RESUMEN

Mercury contamination in groundwater is a serious global environmental issue that poses threats to human and environmental health. While MoS2 nanosheets have been proven promising in removing Hg from groundwater, an effective tool for in situ groundwater remediation is still needed. In this study, we investigated the transport and retention behavior of MoS2 nanosheets in sand column, and employed the formed MoS2in situ reactive zone (IRZ) for the remediation of Hg-contaminated groundwater. Breakthrough test revealed that high flow velocity and MoS2 initial concentration promoted the transport of MoS2 in sand column, while the addition of Ca ions increased the retention of MoS2. In Hg removal experiments, the groundwater flow velocity did not influence the Hg removal capacity due to the fast reaction rate between MoS2 and Hg. With an optimized MoS2 loading, MoS2IRZ effectively reduced the Hg effluent concentration down to <1 µg/L without apparent Hg remobilization. Additionally, flake-like MoS2 employed in this study showed much better Hg removal performance than flower-like and bulk MoS2, as well as other reported materials, with the Hg removal capacity a few to tens of times higher than those materials. These results suggest that MoS2 nanosheets have the potential to be an efficient IRZ reactive material for in situ remediation of Hg in contaminated groundwater.

2.
J Hazard Mater ; 471: 134292, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631254

RESUMEN

The critical challenge of effectively removing Pb-EDTA complexes and Pb(II) ions from wastewater is pivotal for environmental remediation. This research introduces a cutting-edge bulk-MoS2/H2O2 system designed for the simultaneous decomplexation of Pb-EDTA complexes and extraction of free Pb(II) ions, streamlining the process by eliminating the need for subsequent treatment stages. The system exhibits outstanding efficiency, achieving 98.1% decomplexation of Pb-EDTA and 98.6% removal of Pb. Its effectiveness is primarily due to the generation of reactive oxygen species, notably •OH and O2•- radicals, facilitated by bulk-MoS2 and H2O2. Key operational parameters such as reagent dosages, Pb(II): EDTA molar ratios, solution pH, and the presence of coexisting ions were meticulously evaluated to determine their impact on the system's performance. Through a suite of analytical techniques, the study confirmed the disruption of Pb-O and Pb-N bonds, further elucidating the decomplexation process. It also underscored the synergistic role of bulk-MoS2's adsorption properties and the formation of PbMoO4-like precipitates in enhancing Pb elimination. Demonstrating the bulk-MoS2/H2O2 system as a robust, one-step solution that meets stringent Pb emission standards, this study provides in-depth insights into the removal mechanisms of Pb-EDTA, affirming its potential for broader application in wastewater treatment practices.

3.
Eur J Pharmacol ; 969: 176429, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423241

RESUMEN

Cancer cachexia, a multi-organ disorder resulting from tumor and immune system interactions, prominently features muscle wasting and affects the survival of patients with cancer. Ursolic acid (UA) is known for its antioxidant, anti-inflammatory, and anticancer properties. However, its impact on cancer cachexia remains unexplored. This study aimed to assess the efficacy of UA in addressing muscle atrophy and organ dysfunction in cancer cachexia and reveal the mechanisms involved. UA dose-dependently ameliorated C2C12 myotube atrophy. Mechanistically, it inhibited the expression of muscle-specific RING finger containing protein 1 (MURF1) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and upregulated the mRNA or protein levels of myogenic differentiation antigen and myogenin in cultured C2C12 myotubes treated with conditioned medium. In vivo, UA protected CT26 tumor-bearing mice against loss of body weight, as well as increased skeletal muscle and epididymal fat without affecting tumor growth. Additionally, UA increased food intake in CT26 tumor-bearing mice. The mRNA expression of tumor necrosis-α and interleukin 6 was significantly downregulated in the intestine, gastrocnemius, and heart tissues following 38 d UA administration. UA treatment reversed the levels of myocardial function indicators, including creatine kinase, creatine kinase-MB, lactate dehydrogenase, car-dial troponin T, and glutathione. Finally, UA treatment significantly inhibited the expression of MURF1, the phosphorylation of nuclear factor kappa-B p65, and STAT3 in the gastrocnemius muscle and heart tissues of cachexic mice. Our findings suggest that UA is a promising natural compound for developing dietary supplements for cancer cachexia therapy owing to its anti-catabolic effects.


Asunto(s)
Caquexia , Neoplasias , Humanos , Animales , Ratones , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Ácido Ursólico , Factor de Transcripción STAT3/metabolismo , Neoplasias/patología , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Transducción de Señal , Atrofia Muscular/metabolismo , ARN Mensajero/metabolismo
5.
Nanoscale ; 15(43): 17434-17442, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37855687

RESUMEN

Epsilon-near-zero (ENZ) materials with vanishing permittivity exhibit unprecedented optical nonlinearity within subwavelength propagation lengths in the ENZ region, making them promising photoelectric materials that have achieved exciting results in ultrafast pulse laser modulations. In this study, we fabricated a novel saturable absorber (SA) based on a corrugated indium tin oxide (CITO) film with a symmetrical geometry using a low-cost self-assembly process. The strong saturable absorption of the CITO film triggered by the ENZ effect at normal incidence was comparable to that of the planar indium tin oxide (ITO) film at an optimal 60° incidence (TM polarization) at 1340 nm. In addition, the strong nonlinear optical properties of the CITO film were not limited by the incident angle and polarization state of the pump laser over a wide range of 0-20°. Benefiting from the excellent saturable absorption of CITO-based SA at normal incidence, a Q-switching operation with CITO-based SA at 1.34 µm was achieved in a Nd:YVO4 solid-state laser system, obtaining pulses of a duration of 85.6 ns, which was one order of magnitude narrower than that of the planar ITO-based SA. This study presents a new strategy for developing high-performance ENZ-based SAs and ultrafast lasers.

6.
BMC Anesthesiol ; 23(1): 168, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198555

RESUMEN

OBJECTIVES: The use of intravenous analgesics during emergency cesarean section may lead to adverse neonatal outcomes. In our study, we investigated whether a single intravenous (i.v.) dose of 25 mg esketamine administered to parturients with inadequate analgesia during epidural anesthesia for cesarean section would affect the neonate. DESIGN: We reviewed the records of parturients who were transferred from labor analgesia to epidural anesthesia for emergency cesarean section from January 2021 to April 2022. Parturients were grouped by whether they received esketamine infusions during the incision-delivery interval. Neonatal outcomes, including umbilical arterial-blood gas analysis (UABGA), Apgar score, and total days spent by the neonate in the hospital, were compared between the two groups. The secondary outcomes of this study included BP, heart rate (HR), SPO2 and the incidence of adverse effects in parturients during operation. SETTING: China. RESULTS: After propensity score matching, 31 patients remained in each of the non-esketamine and esketamine groups. There were no significant differences in neonatal outcomes, including UABGA, Apgar score, and total days in the hospital, between the two groups. Additionally, our study showed a similar hemodynamic performance in parturients between the two groups during operation. CONCLUSIONS: Intravenous esketamine (25 mg) is safe for neonates when it is given to parturients transferred from labor analgesia to emergency cesarean section.


Asunto(s)
Analgesia Epidural , Analgesia Obstétrica , Anestesia Epidural , Recién Nacido , Embarazo , Humanos , Femenino , Cesárea , Estudios Retrospectivos , Analgesia Epidural/efectos adversos , Analgésicos , Analgesia Obstétrica/efectos adversos
7.
J Genet Genomics ; 50(7): 462-472, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37068629

RESUMEN

Since the discovery of the first transposon by Dr. Barbara McClintock, the prevalence and diversity of transposable elements (TEs) have been gradually recognized. As fundamental genetic components, TEs drive organismal evolution not only by contributing functional sequences (e.g., regulatory elements or "controllers" as phrased by Dr. McClintock) but also by shuffling genomic sequences. In the latter respect, TE-mediated gene duplications have contributed to the origination of new genes and attracted extensive interest. In response to the development of this field, we herein attempt to provide an overview of TE-mediated duplication by focusing on common rules emerging across duplications generated by different TE types. Specifically, despite the huge divergence of transposition machinery across TEs, we identify three common features of various TE-mediated duplication mechanisms, including end bypass, template switching, and recurrent transposition. These three features lead to one common functional outcome, namely, TE-mediated duplicates tend to be subjected to exon shuffling and neofunctionalization. Therefore, the intrinsic properties of the mutational mechanism constrain the evolutionary trajectories of these duplicates. We finally discuss the future of this field including an in-depth characterization of both the duplication mechanisms and functions of TE-mediated duplicates.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Elementos Transponibles de ADN/genética , Mutación , Secuencias Reguladoras de Ácidos Nucleicos , Evolución Molecular
8.
Molecules ; 28(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903276

RESUMEN

Two novel electrochromic aromatic polyimides (named as TPA-BIA-PI and TPA-BIB-PI, respectively) with pendent benzimidazole group were synthesized from 1,2-Diphenyl-N,N'-di-4-aminophenyl-5-amino-benzimidazole and 4-Amino-4'-aminophenyl-4″-1-phenyl-benzimidazolyl-phenyl-aniline with 4,4'-(hexafluoroisopropane) phthalic anhydride (6FDA) via two-step polymerization process, respectively. Then, polyimide films were prepared on ITO-conductive glass by electrostatic spraying, and their electrochromic properties were studied. The results showed that due to the π-π* transitions, the maximum UV-Vis absorption bands of TPA-BIA-PI and TPA-BIB-PI films were located at about 314 nm and 346 nm, respectively. A pair of reversible redox peaks of TPA-BIA-PI and TPA-BIB-PI films that were associated with noticeable color changed from original yellow to dark blue and green were observed in the cyclic voltammetry (CV) test. With increasing voltage, new absorption peaks of TPA-BIA-PI and TPA-BIB-PI films emerged at 755 nm and 762 nm, respectively. The switching/bleaching times of TPA-BIA-PI and TPA-BIB-PI films were 13 s/16 s and 13.9 s/9.5 s, respectively, showing that these polyimides can be used as novel electrochromic materials.

9.
Opt Express ; 31(2): 2208-2224, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785239

RESUMEN

Ultrathin planar transparent conducting oxide (TCO) films are commonly used to enhance the optical response of epsilon-near-zero (ENZ) devices; however, our results suggest that thickness-dependent loss renders them ineffective. Here, we investigated the thickness-dependent loss of indium tin oxide (ITO) films and their effect on the ENZ-enhanced optical responses of ITO and ITO/SiO2 multilayer stacks. The experimental and computational results show that the optical loss of ITO films increases from 0.47 to 0.70 as the thickness decreases from 235 to 52 nm, which results in a reduction of 60% and 45% in the maximum field enhancement factor of a 52-nm monolayer ITO and 4-layer ITO/SiO2 multilayer stack, respectively. The experimental results show that the ENZ-enhanced nonlinear absorption coefficient of the 52-nm single-layer ITO film is -1.6 × 103 cm GW-1, which is 81% lower than that of the 235-nm ITO film (-8.6 × 103 cm GW-1), indicating that the thickness-dependent loss makes the ultrathin TCO films unable to obtain greater nonlinear responses. In addition, the increased loss reduces the cascading Berreman transmission valley intensity of the 4-layer ITO/SiO2 multilayer stack, resulting in a 42% reduction in the ENZ-enhanced nonlinear absorption coefficient compared to the 235-nm ITO film and a faster hot electron relaxation time. Our results suggest that the thickness and loss trade-off is an intrinsic property of TCO films and that the low-loss ultrathin TCO films are the key to the robust design and fabrication of novel ENZ devices based on flat ultrathin TCO films.

10.
Front Psychiatry ; 14: 1318637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283894

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. Methods: Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. Results: From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. Interpretation: Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.

11.
Phys Chem Chem Phys ; 25(1): 796-805, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36510741

RESUMEN

Coexistence of intrinsic ferromagnetism and piezoelectricity, namely piezoelectric ferromagnetism (PFM), is crucial to advance multifunctional spintronic technologies. In this work, we demonstrate that Janus monolayer YBrI is a PFM, which is dynamically, mechanically and thermally stable. The electronic correlation effects on the physical properties of YBrI are investigated by using generalized gradient approximation plus U (GGA+U) approach. For out-of-plane magnetic anisotropy, YBrI is a ferrovalley (FV) material, and its valley splitting is larger than 82 meV within the considered U range. The anomalous valley Hall effect (AVHE) can be achieved under an in-plane electric field. However, for in-plane magnetic anisotropy, YBrI is a common ferromagnetic (FM) semiconductor. When considering intrinsic magnetic anisotropy, the easy axis of YBrI is always in-plane, and its magnetic anisotropy energy (MAE) varies from 0.309 meV to 0.237 meV (U = 0.0 eV to 3.0 eV). However, the magnetization can be adjusted from the in-plane to out-of-plane direction by an external magnetic field, and then lead to the occurrence of valley polarization. Moreover, the missing centrosymmetry along with broken mirror symmetry results in both in-plane and out-of-plane piezoelectricity in the YBrI monolayer. At a typical U = 2.0 eV, the piezoelectric strain coefficient d11 is predicted to be -5.61 pm V-1, which is higher than or comparable with the ones of other known two-dimensional (2D) materials. The electronic and piezoelectric properties of YBrI can be effectively tuned by applying biaxial strain. For example, tensile strain can enhance valley splitting and d11 (absolute value). The predicted magnetic transition temperature of YBrI is higher than those of experimentally synthesized 2D FM materials CrI3 and Cr2Ge2Te6. Our findings of these distinctive properties could pave the way for designing multifunctional spintronic devices, and bring forward a new perspective for constructing 2D materials.

12.
Oxid Med Cell Longev ; 2022: 1330928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425058

RESUMEN

Objective: Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor ß (ERß) pathway in neonatal mice with HIBD. Methods: A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERß were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERß inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERß pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results: ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERß proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERß proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion: ICA pretreatment may promote autophagy by activating the ERα and ERß pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.


Asunto(s)
Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Ratones , Animales Recién Nacidos , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipocampo/metabolismo
13.
ACS Nano ; 16(8): 12878-12888, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35905035

RESUMEN

Ultrafast all-optical switches based on epsilon-near-zero (ENZ)-enhanced nonlinear refraction in transparent conducting oxides have achieved exciting results in realizing large absolute modulations. However, broad-band, polarization-independent, and wide-angle ultrafast all-optical switches have been challenging to produce, due to the inherent narrow band, polarization-dependent, and angle-dependent characteristics of the ENZ effect. To this end, we propose an ultrafast all-optical switch based on the enhanced nonlinear absorption of corrugated indium tin oxide (ITO) thin films. Taking advantage of the perfect absorption and localized field enhancement of the ENZ and localized surface plasmon resonance modes, we significantly enhanced the nonlinear absorption of the corrugated ITO film in the 1450-1650 nm telecom band. The experimental results show that the nonlinear saturable absorption coefficient of the corrugated ITO film at 1450 nm was as high as -1.5 × 105 cm GW-1, enabling all-optical switching to obtain an extinction ratio of 14.32 dB and an ultrafast switching time of 350 fs at a pump fluence of 18.51 mJ cm-2. Furthermore, the all-optical switch achieved an extinction ratio of over 15 dB and an insertion loss of approximately 2.6 dB within the 200 nm absorption band and exhibited polarization-independent and wide-angle features. The ultrafast temporal response can be attributed to intraband transient bleaching of the corrugated ITO film. Our findings demonstrate that corrugated ENZ films can overcome the inherent narrow-band, polarization-dependent, and angle-dependent problems of natural ENZ materials without increasing the response time, making them a potential ENZ ultrafast all-optical switching material platform.

14.
Gen Psychiatr ; 35(1): e100685, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309241

RESUMEN

Background: Schizophrenia is a serious mental illness affecting approximately 20 million individuals globally. Both genetic and environmental factors contribute to the illness. If left undiagnosed and untreated, schizophrenia results in impaired social function, repeated hospital admissions, reduced quality of life and decreased life expectancy. Clinical diagnosis largely relies on subjective evidence, including self-reported experiences, and reported behavioural abnormalities followed by psychiatric evaluation. In addition, psychoses may occur along with other conditions, and the symptoms are often episodic and transient, posing a significant challenge to the precision of diagnosis. Therefore, objective, specific tests using biomarkers are urgently needed for differential diagnosis of schizophrenia in clinical practice. Aims: We aimed to provide evidence-based and consensus-based recommendations, with a summary of laboratory measurements that could potentially be used as biomarkers for schizophrenia, and to discuss directions for future research. Methods: We searched publications within the last 10 years with the following keywords: 'schizophrenia', 'gene', 'inflammation', 'neurotransmitter', 'protein marker', 'gut microbiota', 'pharmacogenomics' and 'biomarker'. A draft of the consensus was discussed and agreed on by all authors at a round table session. Results: We summarised the characteristics of candidate diagnostic markers for schizophrenia, including genetic, inflammatory, neurotransmitter, peripheral protein, pharmacogenomic and gut microbiota markers. We also proposed a novel laboratory process for diagnosing schizophrenia in clinical practice based on the evidence summarised in this paper. Conclusions: Further efforts are needed to identify schizophrenia-specific genetic and epigenetic markers for precise diagnosis, differential diagnosis and ethnicity-specific markers for the Chinese population. The development of novel laboratory techniques is making it possible to use these biomarkers clinically to diagnose disease.

15.
ACS Omega ; 7(11): 9267-9275, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350369

RESUMEN

Two-dimensional materials with excellent surface-volume ratios and massive reaction sites recently have been receiving attention for gas sensing. With first-principles calculations, we explored the performance of monolayer Sc2CF2 as a gas sensor. We investigated how molecule adsorption affects its electronic structure and optical properties. It is found that a large charge transfer quantity happens between Sc2CF2 and NO2, which results from the fact that the lowest unoccupied molecular orbital (LUMO) of NO2 is below the valence band maximum (VBM) of Sc2CF2. Moreover, the MD simulation shows that NO2 can adsorb on the Sc2CF2 surface stably at room temperature. We explored the effect of biaxial strain on the adsorption energy and charge transfer quantity of each system, and the results show that the biaxial strain can enhance both the adsorption energy and charge transfer quantity of the NO2 system and thus can improve the sensitivity of Sc2CF2 in detecting the NO2 molecule. Furthermore, we investigated the adsorption behavior and charge transfer of polar polyatomic molecules at the Sc2CF2 surface with h-BN as a substrate, and the results demonstrate that the h-BN substrate can hardly modify the main results. Our result predicts that Sc2CF2 can be a promising selective and sensitive sensor to detect the NO2 molecule, and could also give a theoretical guide for other terminated MXenes used for gas sensors or detectors.

16.
Mol Neurobiol ; 59(5): 2776-2798, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35190953

RESUMEN

Lepidium meyenii (maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb possesses antioxidant and antiapoptotic activities, enhances autophagy functions, prevents cell death, and protects neurons from ischemic damage. Macamide B, an effective active ingredient of maca, exerts a neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), but the mechanism underlying its neuroprotective effect is not yet known. The purpose of this study was to explore the effect of macamide B on HIBD-induced autophagy and apoptosis and its potential neuroprotective mechanism. The modified Rice-Vannucci method was used to induce HIBD in 7-day-old (P7) macamide B- and vehicle-pretreated pups. TTC staining was performed to evaluate the cerebral infarct volume in pups, the brain water content was measured to evaluate the neurological function of pups, neurobehavioural testing was conducted to assess functional recovery after HIBD, TUNEL and FJC staining was performed to detect cellular autophagy and apoptosis, and Western blot analysis was used to detect the levels of proteins in the pro-survival phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway and autophagy and apoptosis-related proteins. Macamide B pretreatment significantly decreases brain damage and improves the recovery of neural function after HIBD. At the same time, macamide B pretreatment activates the PI3K/AKT signaling pathway after HIBD, enhances autophagy, and reduces hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of the PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that a macamide B pretreatment might regulate autophagy through the PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.


Asunto(s)
Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Animales Recién Nacidos , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Encéfalo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Ratones , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
17.
China CDC Wkly ; 3(35): 736-740, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34594980

RESUMEN

WHAT IS ALREADY KNOWN ON THIS TOPIC?: Triatoma rubrofasciata is a potential vector that can transmit American trypanosomiasis and was widely recorded in South of China. WHAT IS ADDED BY THIS REPORT?: Because of the low density of the triatomines, more habitats have not been discovered. This study mainly focused on predicting the geographical distribution of T. rubrofasciata under current and future climatic conditions in China using the MaxEnt model. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: The result showed that the distribution of T. rubrofasciata was largely affected by annual mean temperature and possessed a high potential for expansion in southern China in the future. Our predictions are useful for targeting surveillance efforts in high-risk areas and increasing the efficiency and accuracy of public health investigations and vector control efforts in China.

18.
Phys Chem Chem Phys ; 23(39): 22443-22450, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34585695

RESUMEN

Two-dimensional (2D) piezoelectric ferromagnetism (PFM) is essential for the development of the next-generation multifunctional spintronic technologies. Recently, the layered van der Waals (vdW) compound MnBi2Te4 as a platform to realize the quantum anomalous Hall effect (QAHE) has attracted great interest. In this work, the Janus monolayer MnSbBiTe4 with dynamic, mechanical and thermal stabilities is constructed from a synthesized non-piezoelectric MnBi2Te4 monolayer by replacing the top Bi atomic layer with Sb atoms. The calculated results show that monolayer MnSbBiTe4 is an intrinsic ferromagnetic (FM) semiconductor with a gap value of 0.25 eV, whose easy magnetization axis is out-of-plane direction with magnetic anisotropy energy (MAE) of 158 µeV per Mn. The predicted Curie temperature TC is about 20.3 K, which is close to that of monolayer MnBi2Te4. The calculated results show that the in-plane d11 is about 5.56 pm V-1, which is higher than or comparable to those of other 2D known materials. Moreover, it is found that strain engineering can effectively tune the piezoelectric properties of Janus monolayer MnSbBiTe4. The calculated results show that tensile strain can improve the d11, which is improved to be 21.16 pm V-1 at only 1.04 strain. It is proved that the ferromagnetic order, semiconducting properties, out-of-plane easy axis and a large d11 are robust against electronic correlations. Our work provides a possible way to achieve PFM with a large d11 in well-explored vdW compound MnBi2Te4, which makes it possible to use the piezoelectric effect to tune the quantum transport process.

19.
Nat Commun ; 12(1): 4280, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257290

RESUMEN

Despite long being considered as "junk", transposable elements (TEs) are now accepted as catalysts of evolution. One example is Mutator-like elements (MULEs, one type of terminal inverted repeat DNA TEs, or TIR TEs) capturing sequences as Pack-MULEs in plants. However, their origination mechanism remains perplexing, and whether TIR TEs mediate duplication in animals is almost unexplored. Here we identify 370 Pack-TIRs in 100 animal reference genomes and one Pack-TIR (Ssk-FB4) family in fly populations. We find that single-copy Pack-TIRs are mostly generated via transposition-independent gap filling, and multicopy Pack-TIRs are likely generated by transposition after replication fork switching. We show that a proportion of Pack-TIRs are transcribed and often form chimeras with hosts. We also find that Ssk-FB4s represent a young protein family, as supported by proteomics and signatures of positive selection. Thus, TIR TEs catalyze new gene structures and new genes in animals via both transposition-independent and -dependent mechanisms.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma de Planta/genética , Secuencias Repetidas Terminales/genética , Animales , Oryza/genética
20.
Inflammation ; 44(5): 1724-1736, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33877484

RESUMEN

In recent decades when biological agents have flourished, a part of patients suffering from inflammatory bowel disease (IBD) have received the treatment of tumor necrosis factor inhibitors or IL-1 antibodies. This study aims to investigate the anti-colitis effects of bispecific antibody (FL-BsAb1/17) targeting IL-1ß and IL-17A comparing with TNF-α soluble receptor medicine etanercept. IBD model in mice was established by drinking 3% DSS (dextran sulfate sodium salt). On the first day of drinking DSS, treatments with etanercept (5 mg/kg) or different doses of FL-BsAb1/17 (1 mg/kg, 5 mg/kg, and 10 mg/kg) were started by intraperitoneal injection every other day. The results demonstrated that FL-BsAb1/17 treatment was more effective than etanercept at the same dose (5 mg/kg) in relieving the typical symptom of ulcerative colitis induced by DSS (such as the severity score and intestinal shortening), and down-regulating the expression of inflammatory factors (IL-17A, IL-6, IL-12, IL-22, IL-1ß, IL-23, TNF-α) in the serum and colon. FL-BsAb1/17 could also reduce the degree of intestinal fibrosis. The same dose of FL-BsAb1/17 (5 mg/kg) performed better than etanercept in down-regulating MDA and up-regulating SOD (superoxide dismutase), CAT (catalase), and T-AOC (total antioxidant capacity) in serum. Both FL-BsAb1/17 and etanercept could reduce the transcription of Bax and increase the transcription of Bcl-2 and slow down apoptosis in colitis colon tissue. We conclude that the blocking of IL-1ß and IL-17A can inhibit DSS-induced ulcerative colitis and FL-BsAb1/17 may have potential to become a new dual-target candidate for colitis treatment.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Inmunosupresores/uso terapéutico , Interleucina-17/antagonistas & inhibidores , Interleucina-1beta/antagonistas & inhibidores , Animales , Anticuerpos Biespecíficos/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Etanercept/farmacología , Etanercept/uso terapéutico , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Inmunosupresores/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...